
Caching and Performance Deep Dive 2.0
Fabian Franz

VP of Software Engineering
Tag1 Consulting

@fabianfranz

Overview

● Fabian Franz

● VP of Software Engineering @ Tag1 Consulting

● Co-Author of BigPipe and the Drupal 8/9 Caching

system + D7 core maintainer + subsystems ...

=> Motivation: Teach you all I know about Caching!

Overview
About me

● Disclaimer: Beginner Caching-Workshop!

● Some concepts from a different angle

however.

● Roughly four parts with 20 min each and 10

min for Questions in between parts

(4x30 min == 2 hours)

Overview
What to expect: Educational Workshop

● Disclaimer: Beginner Caching-Workshop!

● As much as possible beginner friendly*, but I

know too much by now that it's hard to know

what you don't know anymore.

=> Please ask Questions - lot's of it.

* Authenticated user caching is likely intermediate.

Overview
What to expect: Educational Workshop

● Learning how to setup a D9 site for the first

time

● A completely different session than at

DrupalCon Global (might consider to come back in an hour

or so - then lots of new things! :D ...)

● Changes are clearly outlined in the session

description

Overview
What not to expect

● Part 1: General caching and cache invalidation strategies

(cache items, cache max-age and tags)

● Part 2: Cache variation, cache hit ratio, placeholders and

uncacheable things

● Part 3: Caching layers + Common Caching Pitfalls

● Part 4: CDN Variation + Authenticated User Caching

Overview
What to expect: Educational Workshop

● Get the code:

https://github.com/LionsAd/cache_edu/

● Install D9 via ddev or bring your own D9

install. Copy it into modules/custom/ and

enable the cache_edu module.

Overview
What to expect: Educational Workshop

https://github.com/LionsAd/cache-edu/

1. What is Caching?

In computing, a cache is a hardware or software component

that stores data so that future requests for that data can be

served faster; the data stored in a cache might be the result

of an earlier computation or a copy of data stored

elsewhere.

Wikipedia

“ “

● Example: We have a restaurant and

we prepare meals (pages)

● Pizza takes 10 min to prepare

● Takeaway => Pizza is wrapped and

given out

What is Caching?
Sooo much theory ...

Attribution: Stevemconst61 / Public domain

● Example: We have a restaurant and

we prepare meals (pages)

● Pizza takes 10 min to prepare

● Takeaway => Pizza is wrapped and

given out -----> THAT IS CACHING!

What is Caching?
Sooo much theory ...

Attribution: Sarahinloes / CC BY-SA 4.0

● That’s a cache, performance of

pizza delivery is improved

● Finite numbers of pizzas?

What is Caching?
Sooo much theory ...

Attribution: igorovsyannykov / CC0

● We have a magic replicator!

● Customer comes, we replicate the Pizza that

we prepared earlier, and give it away

What is Caching?
Sooo much theory ...

● Every item that we cache gets a name: Cache

item name or cache address

● In Drupal this is a cache ID or later this is also

called “cache keys”

● Cache keys sample -- [‘pizza’, ‘margherita’] =>

pizza:margherita

What is Caching?
Sooo much theory ...

Let’s make Pizza! :D

$cached_pizza = \Drupal::cache('pizzas')->get('pizza:margherita');

if ($cached_pizza) {

 return static::deliver($cached_pizza->data);

}

$pizza = \Drupal::service('pizza.oven')->make('margherita');

\Drupal::cache('pizzas')->set('margherita', $pizza);

return static::deliver($pizza);

How to cache?
Examples for you :)

Who sees the bug?

$cid = 'pizza:margherita'; // Cache ID

$cached_pizza = \Drupal::cache('pizzas')->get($cid);

if ($cached_pizza) {

 return static::deliver($cached_pizza->data);

}

$pizza = \Drupal::service('pizza.oven')->make('margherita');

\Drupal::cache('pizzas')->set($cid, $pizza);

return static::deliver($pizza);

How to cache?
Fixed example!

How long is a product valid?

● Supermarket: Best before [DATE]

● Pizza after a while looks like this =>

Don’t want to eat it anymore …

● Solution: Expiration date

Image intentionally omitted :D

How long is a
product valid?

$cid = 'pizza:margherita'; // Cache ID

$time_to_live = 10*60; // 10 min valid

$pizza = \Drupal::service('pizza.oven')->make('margherita');

\Drupal::cache('pizzas')->set($cid, $pizza, time() + $time_to_live);

return static::deliver($pizza);

Best before:
09/2022

● Page cache in Drupal 3-6

● Still a perfect pattern => EASY!

● Cache for 10 min unconditionally, great for

high traffic sites

Best before:
09/2022

Weekend - let’s clean up!

$cid = 'pizza:margherita'; // Cache ID
\Drupal::cache('pizzas')->delete($cid);

Weekend!
Let’s clean-up!

// Delete all pizzas!
\Drupal::cache('pizzas')->deleteAll();

services:
 # Pizzas cache bin.
 cache.pizzas:
 class: Drupal\Core\Cache\CacheBackendInterface
 tags:
 - { name: cache.bin }
 factory: cache_factory:get
 arguments: ['pizzas']

How to define a pizzas cache bin
cache_edu.services.yml

Let’s offer Frozen Margherita!

● Dough with 00-flour, pint of salt + water

● Custom made Tomato Sauce

● Mozzarella

● Basil

$cid = 'pizza:margherita'; // Cache ID

$bin = 'frozen_pizzas';

$time_to_live = 30*24*60*60; // 30 days valid!

$pizza = \Drupal::service('pizza.maker')->makeFrozen('margherita');

\Drupal::cache($bin)->set($cid, $pizza, time() + $time_to_live);

return $pizza;

Let’s keep it for
longer

Recap - How our Shop works!

● [Customer] drives to our Pizza Shop

● [Customer] orders a frozen [Pizza Margherita]

● [Waiter] gets the [Pizza] from the fridge at

the counter

● [Waiter] checks the expiration date, if it’s

expired he gets one from central storage in

the cellar

● [Waiter] replicates and delivers the pizza to

the customer

Recap (Slides)

Let’s offer Marinara as well!

● Dough with 00-flour, pint of salt + water

● Custom made Tomato Sauce

● Extra virgin olive oil

● Oregano + Garlic
It’s a vegan pizza!

$cid = 'pizza:marinara'; // Cache ID

$bin = 'frozen_pizzas';

$time_to_live = 30*24*60*60; // 30 days valid!

$pizza = \Drupal::service('pizza.maker')->makeFrozen('marinara');

\Drupal::cache($bin)->set($cid, $pizza, time() + $time_to_live);

return static::deliver($pizza);

Mooore Pizza!
Completely new pizza! Not a variation. Now on offer!

Success! We are growing!

A better recipe for the dough!

After super-secret expedition to Italy!

Pizza-Dough 2.0

● Invalidate all the (cached) old pizzas

● Not wait for 30 days

● How do we know if they are new or old?

Pizza-Dough 2.0
We are lovin’ it!

$pizza = \Drupal::cache('frozen_pizzas')->get('pizza:margherita:dough_version=2');

if ($pizza) {

 return $pizza;

}

Pizza-Dough 2.0
Naive solution

● This does not scale :(

● All old versions are kept around

What a Mess!

pizza:marinara:dough_version=2

pizza:marinara:dough_version=3

pizza:marinara:dough_version=4

pizza:marinara:dough_version=10

pizza:marinara:dough_version=10

pizza:margherita:dough_version=10

pizza:margherita:dough_version=3

pizza:margherita:dough_version=4

name: Margherita

expires: 08/2020

tags:

 - dough_version: 2

Pizza-Dough 2.0
Let’s tag it!

name: Marinara

expires: 08/2020

tags:

 - dough_version: 2

$cid = 'pizza:marinara'; // Cache ID

$bin = 'frozen_pizzas';

$expire = time() + 30*24*60*60; // 30 days valid!

$pizza = \Drupal::service('pizza.maker')->makeFrozen('marinara');

\Drupal::cache($bin)->set($cid, $pizza, $expire, ['dough_version']);

Pizza-Dough 2.0
Let’s tag it!

$cid = 'pizza:marinara'; // Cache ID

$bin = 'frozen_pizzas';

$expire = time() + 30*24*60*60; // 30 days valid!

$cache_tags = ['dough_version'];

$pizza = \Drupal::service('pizza.maker')->makeFrozen('marinara');

\Drupal::cache($bin)->set($cid, $pizza, $expire, $cache_tags);

Pizza-Dough 2.0
Let’s tag it!

\Drupal::cache($bin)->invalidateTags(['dough_version']);

Release a new dough version, do that:

● Drupal versions the tags automatically

● cachetags table: `tag, invalidations`

● It’s a version number conceptually!

Pizza-Dough 2.0
Tagging is versioning!

● v3.1.0 (versions)

● 2020-07-15 (timestamps)

● Snow Leopard (names)

● 1..10000 (counters)

Pizza-Dough 2.0
Ways of Tagging

● node:1 is saved and cache tag is invalidated

(v42 -> v43)

● node:1 cache tag now SHOULD BE v43

● Anything tagged with node:1 must have

value of v43, else it’s invalid

Pizza-Dough 2.0
This ain’t easy

● Complex, but once mastered this is so

powerful:

Cache Item = {Name, tag=v42}

Canonical Store = {Current Version of tag =

v43}

Pizza-Dough 2.0
This ain’t easy

Hint: Everything in the same request always

uses the same current version.

In other words: The waiter just checks the list of

dough versions e.g. once a day and not every

minute.

Pizza-Dough 2.0
This ain’t easy

Recap - How our Shop works
- now with tagging!

● [Customer] drives to our Pizza Shop

● [Customer] orders a frozen [Pizza Margherita]

● [Waiter] gets the [Pizza] from the fridge at the counter

● [Waiter] checks the expiration date and tags

● [Waiter] marks the pizza as valid or invalid

● If the pizza is not valid, he gets one from central

storage in the cellar

● [Waiter] replicates and delivers the pizza to the

customer

Recap (Slides)

We now know how to:

● Get an item from the cache

● Set an item into the cache

Recap
All that we learned so far!

● Direct deletion / invalidation by name of item

[cache id - name]

● Time based (TTL - time to live) invalidation

[cache - max-age]

● Tag based invalidation [cache - tags]

Recap
Three ways to expire the cache! *sing*

We also implicitly created a new cache:

● The list of versions for the tags (we store it for

the time of the request)

Hence: Cache tags DON’T solve the problem of cache

invalidation, they just move it to somewhere else.

Recap
Core is cheating :p

1. What is Caching?

Question Time!

2. What should
you cache?

2 years later

Grown even more!

Success is great!

Ready for new products!

Pizza-Shop 2.0
Gluten-free dough, vegan mozzarella, pizza spinacci, ...

● New pizza variations

● Gluten free offering

● Vegan Margherita offering (Marinara was

always vegan!)

Quick Recap
(now with 100% more variation)

● [Customer] comes and orders a pizza

● [Waiter] asks for the preferences (vegan/gluten free)

(cache context)

● [Waiter] checks the fridge for the wanted variation

● [Waiter] gives the wanted variation to the customer

(cache hit) or produces it (cache miss) and then stores

it in the fridge

Recap (Slides)

Pizza-Shop 2.0
Let’s add it to the name (again?!)

● - pizza:margherita:vegan:glutenfree

● - pizza:margherita:vegan:gluten

● - pizza:margherita:vegetarian:glutenfree

● - pizza:margherita:vegetarian:gluten

● - pizza:marinara:vegan:glutenfree

● - pizza:marinara:vegan:gluten

● - pizza:marinara:vegetarian:glutenfree

● - pizza:marinara:vegetarian:gluten

Hmm, nope!

Pizza-Shop 2.0
What we would like:

pizza:margherita pizza:marinara

glutenfree gluten glutenfree gluten

vegan vegetarian vegan vegetarian

● ... are used for variation in Drupal 8/9

● ... are computed on demand

● … internally adds the cache context values to the

Cache ID name

Cache Contexts
Vary me if you can!

Name: pizza:margherita

Cache Contexts:

 - vegan=yes|no

 - gluten_free=yes|no

Cache Contexts
Pizza-Shop 2.0

Name: pizza:margherita:vegan=yes|no:glutenfree=yes|no

Expires: 09/2020

Tag:

 - dough_version=2

Name: pizza:marinara

Cache Contexts:

 - gluten_free=yes|no

Cache Contexts
Pizza-Shop 2.0

Name: pizza:marinara:glutenfree=yes|no

Expires: 09/2020

Tag:

 - dough_version=2

Quick Recap
(now with intelligent variation)

● [Customer] drives to our Pizza Shop

● [Customer] orders a frozen [Pizza Margherita] (Cache ID)

● [Waiter] looks at the [Pizza] variations for Margherita (Cache Context Router)

● [Waiter] asks the [Customer] for his preferences (vegan and/or gluten-free?)

(Cache Context Execution)

● [Waiter] gets the preferred [Pizza] from the fridge at the counter (Cache Retrieval)

● [Waiter] checks the expiration date and tags (Cache validation)

● [Waiter] marks the pizza as valid or invalid

● If the pizza is not valid, he gets one from central storage in the cellar (Cache miss)

● [Waiter] replicates and delivers the pizza to the customer (Cache hit)

Recap (Slides)

● Only works with Render Arrays

● Took us quite some time to understand in depth

● RenderCache could provide it as Service in the future

Cache Contexts
Practical Example

● Only works with Render Arrays

● https://www.drupal.org/project/variationcache for

decoupled and other direct needs

● RenderCache could provide it as Service in the future:

https://www.drupal.org/project/drupal/issues/2551419

Cache Contexts
Practical Example

https://www.drupal.org/project/variationcache
https://www.drupal.org/project/drupal/issues/2551419

$cid = 'pizza:marinara'; // Cache ID

$bin = 'frozen_pizzas';

$time_to_live = 30*24*60*60; // 30 days valid!

$cache_tags = ['dough_version'];

$pizza = \Drupal::service('pizza.maker')->makeFrozen('marinara');

\Drupal::cache($bin)->set($cid, $pizza, time() + $time_to_live, $cache_tags);

Cache Contexts
Direct vs. Render Array - Compare:

$build = [
 '#cache' => [
 'bin' => 'frozen_pizzas',
 'keys' => ['pizza','marinara'],
 'max-age' => $time_to_live,
 'tags' => $cache_tags,
],
];

$build['#pre_render'][] = function($elements) {
 $elements['pizza'] = \Drupal::service('pizza.maker')->makeFrozen('marinara');
 return $elements;
};

Cache Contexts
Direct vs. Render Array - Compare:

● Provide the Cache metadata via #cache

● Provide the Cache miss function (#pre_render)

Cache Contexts
Practical Example using Render Array

$build = [
 '#cache' => [
 'bin' => 'frozen_pizzas',
 'keys' => ['pizza','marinara'],
 'max-age' => $time_to_live,
 'tags' => $cache_tags,
],
];

$build['#pre_render'][] = function($elements) {
 $elements['pizza'] =
\Drupal::service('pizza.maker')
 ->makeFrozen('marinara');
 return $elements;
};

Cache Contexts
Direct vs. Render Array - Compare:

$cid = 'pizza:marinara'; // Cache ID

$bin = 'frozen_pizzas';

$time_to_live = 30*24*60*60; // 30 days

valid!

$cache_tags = ['dough_version'];

$pizza = \Drupal::service('pizza.maker')

->makeFrozen('marinara');

\Drupal::cache($bin)->set($cid, $pizza,
time() + $time_to_live, $cache_tags);

$build = [
 '#cache' => [
 'contexts' => ['user.vegan', 'user.glutenfree'],
 'keys' => ['pizza', $pizza_name],
 'max-age' => $time_to_live,
 'tags' => $cache_tags,
],
];

$build['#pre_render'][] = function($elements) use ($pizza_name) {
 $elements['pizza'] = \Drupal::service('pizza.maker')->makeFrozen($pizza_name);
 return $elements;
};

Cache Contexts
Render Array with Cache Contexts added

$build = [
 '#cache' => [
 'keys' => ['pizza', $pizza_name],
 'max-age' => $time_to_live,
 'tags' => $cache_tags,
],
];

$build['#pre_render'][] = function($elements) use ($pizza_name) {
 $elements['pizza'] = \Drupal::service('pizza.maker')->makeFrozen($pizza_name);
 return $elements;
};

$build['#cache']['contexts'] = ['user.vegan', 'user.glutenfree'];

Cache Contexts
Render Array with Cache Contexts added

$build = [
 '#cache' => [
 'keys' => ['pizza', $pizza_name],
 'max-age' => $time_to_live,
 'tags' => $cache_tags,
],
];

$build['#pre_render'][] = function($elements) use ($pizza_name) {
 $elements['pizza'] = \Drupal::service('pizza.maker')->makeFrozen($pizza_name);

 $elements['#cache']['contexts'][] = 'user.glutenfree';
 if ($pizza_name == 'margherita') {
 $elements['#cache']['contexts'][] = 'user.vegan';
 }
 return $elements;
};

Cache Contexts
Render Array with dynamic cache contexts

class UserVeganCacheContext extends UserCacheContext {

 /**
 * {@inheritdoc}
 */
 public static function getLabel() {
 return t('Vegan User');
 }

 /**
 * {@inheritdoc}
 */
 public function getContext() {
 return $this->user
 ->field_vegan
 ->value() ? 'yes' : 'no';
 }

}

Cache Contexts
Creating a Cache Context: src/UserVeganCacheContext.php

services:

 cache_context.user.vegan:

 class: Drupal\pizza\UserVeganCacheContext

 arguments: ['@current_user']

 tags:

 - { name: cache.context}

Cache Contexts
Creating a Cache Context: pizza.services.yml

TADA! That works great!

Alert: Fridge is full!

So many variations ...

● Pizza Spinacci is bought way less

● Custom pizza is “uncacheable”

● Check your cache hit ratio and
invalidations:
https://www.drupal.org/project/
cache_metrics

Help!
Soooo many variations ...

Attribution: Agnieszka Kwiecień (Nova / CC BY-SA 3.0)

https://www.drupal.org/project/cache_metrics
https://www.drupal.org/project/cache_metrics

● Let’s disable the cache

● Easiest: Not cache at all

Help!
Soooo many variations ...

Attribution: Agnieszka Kwiecień (Nova / CC BY-SA 3.0)

$build['#cache']['max-age'] = 0;

Disable cache
Max-Age = 0

$cacheable_object->setCacheMaxAge(0);

Disable cache
For cacheable objects

<?php

$build['#pre_render'][] = function($elements) use ($pizza_name, $ingredients) {
 if ($pizza_name == 'custom') {
 $pizza = \Drupal::service('pizza.maker')->makeCustomPizza($ingredients);
 $elements['#cache']['max-age'] = 0;
 return $elements; // We early return ...
 }

 if ($pizza_name == 'spinacci') {
 $elements['#cache']['max-age'] = 0; // We fall through ...
 }

 // [...] The rest of the callback

 return $elements;
};

Disable Cache
Full example

● Cache max-age=0 set after function has been

rendered

● Pitfall: Clear your cache (drush cr) after making such a

change during local development

-> Happened to me more often than I’d like to admit ...

Disable Cache
Practical Example using Render Array

● Pitfall: Clear your cache (drush cr) after making such a

change during local development

● 3 ways:

- drupal cache:tag:invalidate rendered

- drush cache:tag rendered

- \Drupal\Core\Cache::invalidateTags(['rendered']);

Disable Cache
Practical Example using Render Array

$build = [
 '#cache' => [
 'keys' => ['pizza', $pizza_name],
 'max-age' => $time_to_live,
 'tags' => $tags,
],
 '#pizza_name' => $pizza_name,
 '#pre_render' => [$this, 'makePizza'],
];

if (in_array($pizza_name, ['custom', 'spinacci'])) {
 $build['#cache']['max-age'] = 0;
}

Disable Cache
Before it is retrieved from the Cache

● It’s always more efficient to disable the cache before

the item is retrieved from the Cache

● Similar to: Request based Cache Policy

Disable Cache
Practical Example using Render Array

Cache Chains

No Pizza-Shop creates
the Pizza always from Scratch

Pizza is made from pre-prepared things:

Dough (12-24 hrs till ready), Tomato sauce,
Ingredients

● Main page response (need to custom cache)

● Blocks, Menus, Header, Footer, …

[Decoration around the main page response]

Composing Sites
Pages consist of different cached and uncached parts

● Start with the empty pan, add the dough, add the

tomato sauce add the mozzarella cheese and then add

the mushrooms.

● Start with a finished pizza margherita and just add the

mushrooms.

Pizza Funghi
2 ways to create a Pizza with Mushrooms!

That is what the true power of dynamic page cache is:

● We cache the response

● We add flavor / placeholders afterwards

Pizza Funghi
+ Dynamic Page Cache

Drupal 8+9 with two ways for really dynamic things:

● Disable the (dynamic) page cache; just cache all the

inner parts (blank pan, create from scratch)

● Cache the whole response in dynamic page cache and

just add some placeholders for dynamic data

Pizza Funghi
+ Dynamic Page Cache

● Glutenfree cannot be a placeholder

● It’s the foundation of our pizza

● Both are needed:

- Variation (varies all cache entries)

- Placeholders (out of band)

=> Decide case-by-case

Pizza Funghi
+ Dynamic Page Cache

Placeholders

● A placeholder in Drupal: Can be independently

rendered. Must not depend on anything that has been

executed before.

For example:

● It’s not possible to add more wheat to the dough after

the pizza is finished already.

Pizza M+X
Margherita + Placeholders

$elem['#attached']['placeholders']['%%ingredients_placeholder%%'] = $build;

$elem['#markup'] = '%%ingredients_placeholder%%';

Pizza M+X
Classified - Top Secret - Placeholders internal structure

Contract:

● Executed after all other parts have been rendered

● #pre_render => #lazy_builder (stronger contract)

Pizza M+X
+ Placeholders

$build = [

 '#cache' => [

 'keys' => ['pizza', $pizza_name],

 'max-age' => $time_to_live,

 'tags' => $cache_tags,

],

];

$build['#pre_render'][] = function($elements) use ($pizza_name) {

 $elements['pizza'] = \Drupal::service('pizza.maker')->makeFrozen($pizza_name);

 return $elements;

};

Placeholders
LazyBuilder vs. #pre_render

$build = [

 '#cache' => [

 'keys' => ['pizza', $pizza_name],

 'max-age' => $time_to_live,

 'tags' => $cache_tags,

],

];

$build['#lazy_builder'] = [

 '\Drupal\pizza\PizzaLazyBuilder::build',

 [$pizza_name],

];

Code
Lazy Builder - Auto Placeholdering

$build = [

 '#cache' => [

 'keys' => ['pizza', $pizza_name],

 'max-age' => $time_to_live,

 'tags' => $cache_tags,

],

];

$build['#lazy_builder'] = [

 '\Drupal\pizza\PizzaLazyBuilder::build',

 [$pizza_name],

];

$build['#create_placeholder'] = TRUE;

Code
Lazy Builder - Explicit Placeholder

Lazy Builders:

● Must not contain complex data (enforced!)

● Must not depend on the main page request

Pizza M+X
+ LBs + Placeholders - Pitfalls (!)

Lazy Builders + Placeholders allows to:

● Use big_pipe (in Core, enable and good to go!)

● Cache the uncacheable

● Break up variation: per-page/per-user => per-page +

per-user

Pizza M+X
+ LBs + Placeholders

2. What should
you cache?

Question Time!

3. Where should
you cache?

Shop is even
more successful!

But Customers
need to drive to us :(

Many drive for 2 hours
and more

Can’t we do something
about that?

Solution: We offer our pizza
in supermarkets around the world!

Solution:

Content Delivery Network (CDN)

Drupal 8/9 makes it easy:

● Choose CDN (Akamai, Cloudflare, Fastly) or Varnish

● Enable module

● Profit!

CDN
Pizza Delivery Network (PDN!)

CDN does the checks:

● Has the pizza expired?

● Is the dough_version still matching?

● dough_version changes => Give CDN a heads up!

CDN
Pizza Delivery Network (PDN!)

See headers for yourself:

● X-Drupal-Cache-Tags

● Debug option

CDN
Pizza Delivery Network (PDN!)

parameters:

 # Cacheability debugging:

 #

 # Responses with cacheability metadata (CacheableResponseInterface instances)

 # get X-Drupal-Cache-Tags and X-Drupal-Cache-Contexts headers.

 #

 # For more information about debugging cacheable responses, see

 # https://www.drupal.org/developing/api/8/response/cacheable-response-interface

 #

 # Not recommended in production environments

 # @default false

 http.response.debug_cacheability_headers: true

Code
Title

 And this is the result:

● X-Drupal-Cache-Tags: dough_version

● Expires: 09/2022

CDN
Pizza Delivery Network (PDN!)

Great - but what about the dough itself?

Need to get it from warehouse 10 miles away.

Let’s put it in a fridge under the counter

Drupal has ChainedFast:

● ACPu (shared memory within PHP process)

Main rule of thumb:

● If you have things that are seldom changing, put it

into a special bin and connect that bin to “chained

fast”. (mostly read only cache traffic)

Efficiency 3.0
Dough near the counter

$settings['cache']['bins']['pizza_dough'] = 'cache.backend.chainedfast';

Efficiency 3.0
The dough is always near the counter - yeah!

Second rule:

Never put chained fast on things that are often

changing or have lots of variations:

● You can get serious write lock problems and

performance will decrease!

● If the cache is full it can lead to lock-ups as a full

garbage collection needs to be performed.

No Efficiency 3.0
The custom made pizzas should NOT be stored near the counter

 APCu is ideal (and used in Drupal) for:

● FileCache (depends only if the file has changed)

● ClassCache (depends only on where the class sits on

the filesystem)

● Config cache (is invalidated only if config changes)

This shows now also the importance of ‘bins’ as those

can have different cache backends associated with them.

Efficiency 3.0
APCu is really cool :D

Don’t forget Redis / Memcached

● MySQL is a warehouse that’s across the street

● Memcached / Redis is a fridge that is in the room next

door

● ACPu is the fridge below the counter.

Efficiency 4.0
Memcached/Redis is also cool

● MySQL: Large Storage space / Slow: 2-5 ms response

times usually

● Memcached / Redis: Medium storage space / Fast: 0.5 -

1 ms response times usually

● APCu: Small storage space / Fastest: 0.05 ms usually

Efficiency 4.0
Advantages and Disadvantages, hmmm - what to do ...

It is important to distinguish two cases:

● Caches used for creating the pizza (MySQL, APCu,

Memcached) [from parts]

● Caches used for delivering the pizza to the customer

(MySQL, Memcached, CDN, Browser Cache)

Efficiency 4.0
Create Pizza + Deliver Pizza are different cache paths

Lot’s of customers at once

=> Pizza with Spring Onions

● The spring onions can only be cached for a very short

while (micro-caching)

● Potential bottleneck

=> Stampede protection (build into most CDNs)

SHIELD!

Spring Onions
Only seconds TTL

● Inefficient: Prepare lot’s of pizzas in parallel

● Instead: Prepare one spring onion pizza and then just

replicate it.

Stampede Protection
Microcaching + Stampede Protection

public function stampedeProtect($cid) {
 $item = $this->cache->get($cid);
 if ($item) {
 return $item;
 }

 $acquired_lock = $this->lock->acquire('stampede:' . $cid);
 if (!$acquired_lock) {
 sleep(1);
 return $this->stampedeProtect($cid); // Let’s try that again.
 }

 // Rebuild cache
 $item = $this->rebuild();

 $this->cache->set($cid, $item, 30); // Cache for only 30 seconds
 $this->lock->release($acquired_lock);

 return $item;
}

Stampede Protection

Stampede Protection

● Pitfall: If your cache is invalidated faster than processes wait and

you have a long rebuild time, then you can wait endlessly.

● Example: 2 cache invalidations per second (0.5 seconds till next

one)

● All processes wait for cache rebuild => When they come back from

sleep data is already outdated again.

=> VERY TRICKY ISSUE as often just happens under high load

Stampede Protection: Stale data

● Pitfall: Items are expired faster than rebuild.

● Solution: Allow to return invalid items, aka "stale" (we

are micro-caching anyway):

// Return invalid items as well.

$item = $this->cache->get($cid, TRUE);

// Check expiration time yourself.

if ($item && $item->expire >= REQUEST_TIME) {

 return $item;
}

Stampede Protection: Stale data

● Pitfall: Items are expired faster than rebuild.

● Was just fixed in Drupal 7 Core 7.76 for variable_init()

● Sites that slightly misuse the variable system and do

lots of variable_set at run-time (please don't do that):

"Endless waiting for variable_lock ..."

Caching Beyond
Drupal

● PHP: opcache (Tweak it and ensure it has enough

memory)

● MySQL: Query Cache (Disable it, it's inefficient) - for

query caching better use a K/V entity cache approach

● Browser Cache: It's your best friend for images and

CSS / JS.

Service Worker: Can even cache HTML in the browser.

Caching Beyond Drupal
Dont' forget!

Common Caching
Pitfalls

● POSTs are still not cacheable in Drupal Core

● AJAX form submissions hence rebuild the whole page

● This is not optimal for things like a product variation:

- ?color=red

- ?color=blue

● would be all that is needed.

Common Caching Pitfalls
AJAX Forms are POST ...

● POSTs are still not cacheable in Drupal Core

● AJAX form submissions hence rebuild the whole page

Solution:

Core patch and data attribute to use a GET request

Common Caching Pitfalls
AJAX Forms are POST ...

Solution: Core patch and data attribute to use a GET request

Apply:

https://www.drupal.org/project/drupal/issues/956186#comment-13826865

Add: data-ajax-type="get" to the attributes of the ajax element

Profit - Cached GET AJAX requests when changing product variation!

Common Caching Pitfalls
AJAX GET in Core ...

https://www.drupal.org/project/drupal/issues/956186#comment-13826865

● POSTs are still not cacheable in Drupal Core

● Forms are max-age=0, some can be auto-placeholdered (like form

in a block)

● A form is executed as soon as it's encountered on the page:

POST to /home with a newsletter form needs to rebuild the whole

homepage, before finally seeing the newsletter

Common Caching Pitfalls
(AJAX) Forms are POST ...

● POSTs are still not cacheable in Drupal Core

- Manual way:

Ensure the form is rendered as early as possible in the page

rendering process (hook_init() / RequestSubscriber)

Common Caching Pitfalls
(AJAX) Forms are POST ...

● Proposed solution for cacheable POSTs (not implemented):

- Add a cache tag for every form like: form:pizza_newsletter

- If dynamic page cache / RenderCache does not see a form cache

tag on the cache item, then allow caching on POST (max-age > 0)!

- Pizza Newsletter block form execution is then just:

- cache_get() content with placeholders (check for form_id)

- Execute the newsletter form

Common Caching Pitfalls
(AJAX) Forms are POST ...

Plan your caching strategy:

● Know what depends on what

● Know what is not cacheable

● Known when something needs to be invalidated

● https://drupal.org/project/renderviz module can be a

really nice help here.

Common Caching Pitfalls
Planning to fail is better than failing to plan

https://drupal.org/project/renderviz

3. Where should
you cache?

Question Time!

4. CDN Variations
&

Authenticated
User Caching

Back to Pizza! :)

We offer our pizza
in supermarkets around the world!

We are growing further!

Market Research:

US like their pizza differently than in the UK.

Solution: We offer another variation
of the pizza for different regions!

Variation in my CDN

● Drupal Commerce

● All pages vary by "region" as the currency of the prices

is different

● Magic inside of Drupal: Required Cache Contexts!

Variation in my CDN
Real Life Example

parameters:

 renderer.config:

 # Renderer required cache contexts:

 #

 # The Renderer will automatically associate these cache contexts with every

 # render array, hence varying every render array by these cache contexts.

 #

 # @default ['languages:language_interface', 'theme', 'user.permissions']

 required_cache_contexts:
 - 'languages:language_interface'
 - 'theme'
 - 'user.permissions'
 - 'pizza.region' # Our own defined cache context

Variation in my CDN
Required Cache Contexts!

● CDNs do not easily support variation on things that are

easily defined in Drupal as cache context

● The simplest: Vary by URL for language + region

Don't: /en/really-nice-product-1 (different per region)

Do:

 - /UK/en/really-nice-product-1

 - /US/en/really-nice-product-1

Variation in my CDN
Cache Contexts are nice, but ...

● The complex way: Vary by region inside the CDN

- Set a cookie (pizza_region) and 302 to request url

- Convert pizza_region cookie to header in VCL /

Cloudflare worker, etc. so that Drupal sees:

 X-Pizza-Region: US

- Drupal must output (if the cache context is present):

 Vary: X-Pizza-Region, … (instead of Vary: Cookie)

Variation in my CDN
Here is a Cookie for you!

● The complex way II: Vary by region inside the CDN

- Do one request cached per SESSION to an endpoint

that returns all the cache contexts for the user as

X-Pizza-Region and copy those to the request object

- So that Drupal sees again: X-Pizza-Region: US

- Drupal must output (if the cache context is present):

 Vary: X-Pizza-Region, … (instead of Vary: Cookie)

Variation in my CDN
The restart way

● The complex way II: Vary by region inside the CDN

CORE could automate that for you (that is why all

cache contexts collapse on either url OR session in

core), but no one worked on it:

- X-CC-0: session.pizza_region=US

Automatically copy response to headers.

Variation in my CDN
The restart way

● The complex way II: Vary by region inside the CDN

CORE could automate that for you.

In essence the CDN would need to get a heads up

for the missing cache context and re-authenticate

the user. (Request -> Authenticate -> Second

request)

Variation in my CDN
The restart way

● The complex way II: Vary by region inside the CDN

What if we could do:

X-CC-0: pizza.region=US

X-CC-1: user=2

Is that not all that's needed for authenticated user

caching?

Variation in my CDN
The restart way

● The complex way II: Vary by region inside the CDN

What if we could do:

X-CC-0: pizza.region=US

X-CC-1: user=2

That's essentially all that's needed.

Variation in my CDN
The restart way

YES!

Authentiated
User Caching

● Authenticated User Caching means:

- All pages are potentially different by user (preference)

- With placeholders we already can split: Personalized +

Static sections

- But how do we integrate that into the CDN?

Authenticated User Caching
Dynamic Page Cache gets you 90% of the way

● Authenticated User Caching in the CDN needs:

- Variation

- Placeholders (and a way to retrieve them)

Authenticated User Caching in the CDN
Dynamic Page Cache gets you 90% of the way

● Recap: Vary by region inside the CDN

Return X-CC-User from auth endpoint:

X-CC-User: 2

● Drupal returns:

Vary: X-CC-User

AuthUser Variation in my CDN
The restart way

● Recap: Vary by user inside the CDN

- Set a cookie (cc_user) and 302 to request url

- Convert cc_user cookie to header in VCL / Cloudflare

worker, etc. so that Drupal sees:

 X-CC-User: 2

- Drupal must output (if the cache context is present):

 Vary: X-User, … (instead of Vary: Cookie)

AuthUser Variation in my CDN
Here is a Cookie for you!

● Recap: Vary by user inside the CDN

- Set a cookie (cc_user) and 302 to request url

- Convert cc_user cookie to header in VCL / Cloudflare

worker, etc. so that Drupal sees:

 X-CC-User: 2

- Drupal must output (if the cache context is present):

 Vary: X-User, … (instead of Vary: Cookie)

AuthUser Variation in my CDN
Here is a Cookie for you!

Wait a moment, isn't that …

… uhm, insecure?

● Cookies are not safe, anyone can edit them!

[I can be user 3 easily]

● Two ways to solve:

- Use a secret hash per cache context name + value

- Use a signed cookie (with secret hash)

AuthUser Variation in my CDN
Here is a Cookie for you!

● Recap: Vary by user inside the CDN

- Set a cookie (cc_user) and 302 to request url

- Convert cc_user cookie to header in VCL / Cloudflare

worker, etc. so that Drupal sees:

 X-CC-User: 2|1d14f00bb483b1e9ca56545ca48de12b

- Drupal must output (if the cache context is present):

 Vary: X-User, … (instead of Vary: Cookie)

AuthUser Variation in my CDN
Here is a Cookie for you!

● Authenticated User Caching in the CDN needs:

- Variation

- Placeholders (and a way to retrieve them)

Authenticated User Caching in the CDN
Dynamic Page Cache gets you 90% of the way

● Authenticated User Caching in the CDN

● 2 ways:

- AJAX / ESI (Edge-Side-Include) on dedicated URL

- Javascript + Cookies

Note: Variation in the CDN is the first step.

Authenticated User Caching in the CDN
Dynamic Page Cache gets you 90% of the way

● Authenticated User Caching in the CDN

● Simple ESI approach (not implemented):

EsiPlaceholderStrategy:

- Take hash of serialized(lazy builder)

- Store lazy builder for that hash in the KeyValue store

- Execute lazy builder from route /esi/[hash]

Authenticated User Caching in the CDN
Simple ESI

● Authenticated User Caching in the CDN

● Potential Problems:

- ESI page will not have all cache tags when fully

assembled (headers from sub-resp not included)

- Vary is inefficient as all data is stored in the same

object in most CDNs

Authenticated User Caching in the CDN
Simple ESI

● Authenticated User Caching in the CDN

● Vary: X-CC-User is inefficient as all data is stored in the same object in

most CDNs

Solution: Include it in the path (even though it's ignored):

/esi/[hash]?user={{ req.http.X-CC-User }}

Need to add search and replace to ESI urls before they are executed.

Authenticated User Caching in the CDN
Simple ESI

● Authenticated User Caching in the CDN

● Simple AJAX approach: AjaxPlaceholderStrategy (very similar to

BigPipePlaceholderStrategy)

- Execute lazy builder from route /ajax-on-demand/[hash] and deliver like

BigPipe ajax

- Add some client side JS to replace placeholders with ajax requests

Note: Ensure all those AJAX responses are cached in the CDN.

Authenticated User Caching in the CDN
Simple AJAX

That's all way over my head … :(

Is there no simpler way?

● Recap: Authenticated User Caching in the CDN needs:

- Variation

- Placeholders (and a way to retrieve them)

Authenticated User Caching in the CDN
Dynamic Page Cache gets you 90% of the way

● Authenticated User Caching in the CDN:

● The easiest way:

- Don't vary at all for any pages that are not user specific

- /cart, /user => Don't cache in the CDN

- /, /my-awesome-product => The same for every user

Authenticated User Caching in the CDN
The easiest way

● Don't vary at all for any pages

- It's super secure, too! - if you ensure:

 - No user cache context is present

 - Only authenticated users role is used for this

- Remove: Vary: Cookie header

- Overwrite: Cache-Control header with e.g.:

Cache-Control: public, max-age=600

Authenticated User Caching in the CDN
The easiest way

● The easiest way:

- Don't vary at all for any pages that are not user

specific, then add information [Amazon strategy]

- Use Javascript for simple things like user name

Can use a simple placeholdering strategy as well:

<div id="pizza-module-user-name"></div>

Authenticated User Caching in the CDN
The easiest way

● The easiest way:

- Don't vary at all for any pages that are not user

specific, then add information [Amazon strategy]

- Drupal 7 only (port is welcome, very simple):

https://drupal.org/project/cacheable_cookie_handling

solves this problem for our enterprise clients

Authenticated User Caching in the CDN
The easiest way

https://drupal.org/project/cacheable_cookie_handling

Auth User CDN - Think always of:

- Variation
- Placeholders

and you are golden!

Have fun and I’ll
make a Pizza now ;)

yummy

The End!

More Questions?

Follow me: @fabianfranz

Code
Title

Title slide
Additional title

Lorem ipsum dolor sit amet,

consectetur adipiscing elit. Quisque

ultricies dolor id mi auctor.
image

Title
Second line

image

Title
Second line

Lorem ipsum dolor sit amet,

consectetur adipiscing elit. Quisque

ultricies dolor id mi auctor.

Title

image

Lorem ipsum dolor sit amet,

consectetur adipiscing elit. Quisque

ultricies dolor id mi auctor.

Title

image

Lorem ipsum dolor sit amet,

consectetur adipiscing elit. Quisque

ultricies dolor id mi auctor.

image

Title
Second line

● List Item 1

● List Item 1

● List Item 1

Some Section header
Second Line

Title
Second line

Lorem ipsum dolor sit amet, consectetur adipiscing

elit. Quisque ultricies dolor id mi auctor, vel rutrum

diam sodales. Duis nulla justo, commodo

● List Item 1

● List Item 1

● List Item 1

● List Item 1

● List Item 1

● List Item 1

● List Item 1

● List Item 1

● List Item 1

● List Item 1

Title
Second line

This will be a quote about

something or someone

AUTHOR

“ “

